Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 194
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
EFSA J ; 22(4): e8718, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38601864

RESUMEN

The food enzyme AMP deaminase (AMP aminohydrolase; EC 3.5.4.6) is produced with the non-genetically modified microorganism Aspergillus sp. strain DEA 56-111 by Shin Nihon Chemical Co., Ltd. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.005 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The Panel identified a no observed adverse effect level of 1984 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 396,800. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

2.
EFSA J ; 22(4): e8717, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634009

RESUMEN

The food enzyme leucyl aminopeptidase (EC 3.4.11.1) is produced with the genetically modified Aspergillus oryzae strain NZYM-BU by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in five food manufacturing processes. Dietary exposure to the food enzyme TOS was estimated to be up to 1.508 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 4,928 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 3,268. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that the food enzyme does not give rise to safety concerns under the intended conditions of use.

3.
EFSA J ; 22(4): e8713, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38634008

RESUMEN

The food enzyme oryzin (EC 3.4.21.63) is produced with the non-genetically modified Aspergillus ochraceus strain AE-P by Amano Enzyme Inc. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in nine food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.1 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not raise a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1862 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 18,620. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and 31 matches were found, including one food allergen (melon). The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to melon, cannot be excluded, but would not exceed the risk from consumption of this food. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

4.
EFSA J ; 22(4): e8724, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38617194

RESUMEN

The food enzyme phosphodiesterase I (oligonucleotide 5'-nucleotidohydrolase; EC 3.1.4.1) is produced with the non-genetically modified Leptographium procerum strain FDA by DSM Food Specialties B.V. The food enzyme is free from viable cells of the production organism. It is intended to be used in the processing of yeast and yeast products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.171 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1000 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 5848. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

5.
EFSA J ; 22(4): e8711, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38617195

RESUMEN

The food enzyme glutaminase (l-glutamine amidohydrolase EC 3.5.1.2) is produced with the genetically modified Bacillus licheniformis strain NZYM-JQ by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The production strain met the requirements for the qualified presumption of safety (QPS). The food enzyme is free from viable cells of the production organism and its DNA. The enzyme under assessment is intended to be used in six food manufacturing processes. Dietary exposure was estimated to be up to 0.148 mg TOS/kg body weight per day in European populations. Given the QPS status of the production strain and the absence of concern resulting from the food enzyme manufacturing process, toxicological studies were not considered necessary. A search was made for the similarity of the amino acid sequence to those of known allergens and one match with a pollen allergen was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, particularly for individuals sensitised to birch and oak pollen. The Panel concluded that the food enzyme does not give rise to safety concerns under the intended conditions of use.

6.
EFSA J ; 22(4): e8723, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38585217

RESUMEN

The food enzyme subtilisin (EC 3.4.21.62) is produced with the genetically modified Bacillus licheniformis strain NZYM-CB by Novozymes A/S. The genetic modifications do not give rise to safety concerns. The food enzyme is considered free from viable cells of the production organism and its DNA. It is intended to be used in six food manufacturing processes. The dietary exposure to the food enzyme-TOS was estimated to be up to 0.722 mg TOS/kg body weight (bw) per day in European populations. The production strain of the food enzyme fulfils the requirements for the qualified presumption of safety approach to safety assessment. As no other concerns arising from the manufacturing process were identified, the Panel considered that toxicological tests were not required for the assessment of this food enzyme. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and 20 matches were found, including two food allergens (melon and pomegranate). The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, particularly in individuals sensitised to melon and pomegranate, but would not exceed the risk from consumption of melon or pomegranate. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

7.
EFSA J ; 22(4): e8702, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591024

RESUMEN

This assessment addresses a food enzyme preparation consisting of the immobilised non-viable cells of the non-genetically modified bacterium identified by the applicant (Samyang Corporation) as Microbacterium foliorum strain SYG27B. This strain produces the enzyme D-psicose 3-epimerase (EC 5.1.3.30). The food enzyme preparation is used for the isomerisation of fructose to produce the speciality carbohydrate D-allulose (synonym D-psicose). Since the hazard identification and characterisation could not be made and the identity of the production organism could not be established, the Panel was unable to complete the assessment of this food enzyme preparation containing D-psicose 3-epimerase.

8.
EFSA J ; 22(4): e8710, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38591025

RESUMEN

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-NP by Amano Enzyme Inc. The production strain meets the requirements for the qualified presumption of safety (QPS) approach to safety assessment. The food enzyme is intended to be used in 14 food manufacturing processes. Since residual amounts of total organic solids (TOS) are removed in three manufacturing processes, dietary exposure was calculated only for the remaining 11 food manufacturing processes in which the food enzyme-TOS is retained. It was estimated to be up to 35.251 mg TOS/kg body weight (bw) per day in European populations. As the production strain qualifies for the QPS approach and no issue of concern arising from the production process of the food enzyme were identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

9.
EFSA J ; 22(3): e8631, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38450083

RESUMEN

The food enzyme mucorpepsin (EC 3.4.23.23) is produced with the non-genetically modified Rhizomucor miehei strain LP-N836 by Meito Sangyo Co., Ltd. The native enzyme can be chemically modified to produce a more thermolabile form. The food enzyme is free from viable cells of the production organism. It is intended to be used in the processing of dairy products for the production of cheese and fermented dairy products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.108 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 95 mg TOS/kg bw per day, the mid-dose tested, which when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 880. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and four matches with respiratory allergens and one with a food allergen (mustard) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to mustard proteins, cannot be excluded. Based on the data provided, the Panel concluded that both the native and thermolabile forms of this food enzyme do not give rise to safety concerns under the intended conditions of use.

10.
EFSA J ; 22(3): e8606, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38440253

RESUMEN

The food enzyme α-galactosidase (α-d-galactoside galactohydrolase; EC 3.2.1.22) is produced with the genetically modified Saccharomyces cerevisiae strain CBS 615.94 by Kerry Ingredients & Flavours Ltd. The production strain of the food enzyme contains multiple copies of a known antimicrobial resistance gene. However, based on the absence of viable cells and DNA from the production organism in the food enzyme, this is not considered to be a risk. As no other concerns arising from the genetically modified microbial source or from the manufacturing process have been identified, the Panel considered that toxicological tests were not needed for the assessment of this food enzyme. The food enzyme is intended to be used in guar gum processing. The dietary exposure was estimated to be up to 0.828 mg TOS/kg body weight per day in European populations. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

11.
EFSA J ; 22(2): e8615, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38389854

RESUMEN

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain NZYM-NB by Novozymes A/S. The production strain meets the requirements for qualified presumption of safety (QPS) approach to safety assessment. The food enzyme is intended to be used in eleven food manufacturing processes. Since residual amounts of total organic solids (TOS) are removed during two processes, dietary exposure was estimated only for the remaining nine food manufacturing processes. Exposure was estimated to be up to 1.327 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the QPS approach and no issue of concern arising from the production process of the food enzyme was identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded (except for distilled alcohol production), but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

12.
EFSA J ; 22(2): e8607, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38361797

RESUMEN

The food enzyme containing chymosin (EC 3.4.23.4) and pepsin (EC 3.4.23.1) is prepared from the abomasum of suckling calves, goats, lambs and buffaloes by Caglificio Clerici S.p.A. It is intended to be used in the production of cheese. As no concerns arise from the source of the food enzyme, from its manufacture and based on the history of safe use and consumption, the Panel considered that toxicological data were not required and no exposure assessment was necessary. The similarity of the amino acid sequences of the two proteins (chymosin and pepsin A) to those of known allergens was searched and two matches were found with respiratory allergens. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

13.
EFSA J ; 22(2): e8617, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38379730

RESUMEN

The food enzyme asparaginase (l-asparagine amidohydrolase; EC 3.5.1.1) is produced with the genetically modified Aspergillus niger strain AGN by DSM Food Specialties B.V. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used to prevent acrylamide formation in food processing. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.434 mg TOS/kg body weight (bw) per day in European populations. The toxicity studies were carried out with an asparaginase from A. niger (strain ASP). The Panel considered this food enzyme as a suitable substitute for the asparaginase to be used in the toxicological studies, because the genetic differences between the production strains are not expected to result in a different toxigenic potential, and the raw materials and manufacturing processes of both food enzymes are comparable. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 1038 mg TOS/kg bw per day, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 724. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

14.
EFSA J ; 22(2): e8618, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38405110

RESUMEN

The food enzyme glutaminase (l-glutamine amidohydrolase; EC 3.5.1.2) is produced with the non-genetically modified Bacillus amyloliquefaciens strain AE-GT by Amano Enzyme Inc. The production strain met the requirements for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in five food manufacturing processes. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 0.462 mg TOS/kg body weight per day in European populations. Given the QPS status of the production strain and the absence of concerns resulting from the food enzyme's manufacturing process, toxicity tests were considered unnecessary by the Panel. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that a risk of allergic reactions upon dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

15.
EFSA J ; 22(2): e8624, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38405112

RESUMEN

The food enzyme microbial collagenase (EC 3.4.24.3) is produced with the genetically modified Streptomyces violaceoruber strain pCol by Nagase (Europa) GmbH. The genetic modifications do not give rise to safety concerns. The food enzyme is free from viable cells of the production organism and its DNA. It is intended to be used in two food manufacturing processes: the production of modified meat and fish products and the production of protein hydrolysates from meat and fish proteins. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 1.098 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 940 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 856. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

16.
EFSA J ; 22(2): e8612, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38410147

RESUMEN

The food enzyme bacillolysin (EC 3.4.24.28) is produced with the non-genetically modified Bacillus amyloliquefaciens strain DP-Cyb74 by Genencor International B.V. The production strain met all requirements for the qualified presumption of safety (QPS) approach to safety assessment. The food enzyme is intended to be used in six food manufacturing processes. Dietary exposure to the food enzyme total organic solids (TOS) was estimated to be up to 1.536 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the QPS approach and no issue of concern arose from the production process of the food enzyme, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no match was found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

17.
EFSA J ; 22(2): e8634, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38410144

RESUMEN

The food enzyme thermolysin (EC. 3.4.24.27) is produced with the non-genetically modified Anoxybacillus caldiproteolyticus strain AE-TP by Amano Enzyme Inc. The food enzyme is free from viable cells of the production organism. It is intended to be used in eight food manufacturing processes. Dietary exposure was estimated to be up to 0.973 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 700 mg TOS/kg bw per day, the mid-dose tested, which, when compared with the estimated dietary exposure, resulted in a margin of exposure of at least 719. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and no matches were found. The Panel considered that the risk of allergic reactions by dietary exposure cannot be excluded, but the likelihood is low. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

18.
EFSA J ; 22(2): e8633, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38410150

RESUMEN

The food enzyme mucorpepsin (EC 3.4.23.23) is produced with the non-genetically modified Rhizomucor miehei strain M19-21 by Meito Sangyo Co., Ltd. The enzyme is chemically modified to produce a thermolabile form. The food enzyme was considered free from viable cells of the production organism. It is intended to be used in the processing of dairy products for the production of cheese and fermented dairy products. Based on the maximum use levels, dietary exposure was estimated to be up to 0.108 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 226 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, results in a margin of exposure of at least 2093. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and four matches to respiratory allergens and one match to a food allergen (mustard) were found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to mustard proteins, cannot be excluded. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns, under the intended conditions of use.

19.
EFSA J ; 22(2): e8616, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38415018

RESUMEN

The food enzyme ß-fructofuranosidase (ß-d-fructofuranoside fructohydrolase; EC 3.2.1.26) is produced with the non-genetically modified Saccharomyces cerevisiae strain NCYC R693 by Kerry Ingredients & Flavours Ltd. The production strain meets the requirements for the qualified presumption of safety (QPS) approach. The food enzyme is intended to be used in four food manufacturing processes. The dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to 2.485 mg TOS/kg body weight per day in European populations. As the production strain qualifies for the QPS approach of safety assessment and no issue of concern arising from the production process of the food enzyme were identified, the Panel considered that no toxicological studies other than the assessment of allergenicity were necessary. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and one match with a tomato allergen was found. The Panel considered that the risk of allergic reactions upon dietary exposure to this food enzyme, particularly in individuals sensitised to tomato, cannot be excluded. However, the likelihood of allergic reactions is expected not to exceed the likelihood of allergic reactions to tomato. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

20.
EFSA J ; 22(1): e8512, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38250500

RESUMEN

The food enzyme mucorpepsin (EC 3.4.23.23) is produced with the non-genetically modified Rhizomucor miehei strain FRO by DSM Food Specialties B.V. The enzyme can be chemically modified to produce a thermolabile form. The food enzyme is free from viable cells of the production organism. It is intended to be used in three food manufacturing processes: processing of dairy products for the production of (1) cheese, (2) edible rennet casein, (3) fermented dairy products. Dietary exposure to the food enzyme-total organic solids (TOS) was estimated to be up to about 0.072 mg TOS/kg body weight (bw) per day in European populations. Genotoxicity tests did not indicate a safety concern. The systemic toxicity was assessed by means of a repeated dose 90-day oral toxicity study in rats. The Panel identified a no observed adverse effect level of 2000 mg TOS/kg bw per day, the highest dose tested, which, when compared with the estimated dietary exposure, results in a margin of exposure of at least 27,778. A search for the similarity of the amino acid sequence of the food enzyme to known allergens was made and five matches were found. The Panel considered that a risk of allergic reactions upon dietary exposure to this food enzyme cannot be excluded, but is considered low, except for individuals sensitised to mustard proteins, for whom the risk will not exceed that of mustard consumption. Based on the data provided, the Panel concluded that this food enzyme does not give rise to safety concerns under the intended conditions of use.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...